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Introduction

A distinctive feature of this work is that the solution of the presented problems is based
on a specially developed toolkit. This toolkit includes two main components: a) symbolic
computer-analytical calculations based on multidimensional integration over convex polyhe-
dra in 𝑛-dimensional space; b) a three-dimensional generalization of the classical Catalan
numbers. This approach is dictated by the fact that the set of traditional tools usually
used in the field of digital image processing is not enough to solve time-consuming tasks of
analyzing random point fields.

There are many tasks that require such a non-standard approach. They arise in many
branches of computer science, for example, in processing of aerospace images, when it is
necessary to localize hidden objects for their more detailed study [1, 2], in computer process-
ing of biomedical images at the stage of an operational search for dangerous disease-causing
abnormalities [3–5], in mathematical theory of communication [6], in construction of multi-
detector search systems for pulse-point sources [7, 8]. Mathematically similar problems are
encountered in information theory and technical diagnostics (in particular, when troubles-
hooting with an intermittent failure discipline) [9, 10], and when studying the process of
registering random point fields using a scanning aperture with a limited number of threshold
levels [11].
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In [11], it was shown that many of the above problems of registration, processing and
analysis of digital images and point fields directly or indirectly lead to the need to solve the
following one-dimensional problem: “Find the probability that after random dropping of 𝑛
points on the interval (0, 1), no 𝜀-grouping will be formed, which includes more than 𝑘 points
that can be completely covered by some subinterval Ω𝜀 ⊂ (0, 𝐿) of length 𝜀”. Hereafter,
without loss of generality (this is an obvious consequence of the standard normalization),
we will assume that 𝐿 = 1, 0 < 𝜀 < 1, and the notation 𝑃𝑛,𝑘(𝜀) will be used instead of the
probability 𝑃𝑛,𝑘(𝜀, 𝐿).

The purpose of this paper is to present specialized analytical methods and software algo-
rithms designed to find exact probability formulas using computer analytics and generalized
multidimensional Catalan numbers.

1. Computer-based analytical calculation of specific solutions for
the problem

The simplicity of the problem posed in the introduction is illusory, and its analytical solution
is known only for the simplest case 𝑘 = 1 [12, 13]:

𝑃𝑛,1(𝜀) = (1− (𝑛− 1)𝜀)𝑛, 0 ≤ 𝜀 ≤ 1/(𝑛− 1). (1)

Formula (1) describes the probability of an event that if n points are randomly dropped onto
the interval (0, 1), not a single 𝜀-group will be formed containing at least 2 points, i. e. that all
dropped points will be at a distance exceeding 𝜀. The classical way to obtain solution (1) is
to represent the required probability in the form of an easily integrable iterated integral [11]:

𝑃𝑛,1(𝜀) = 𝑛!

1∫︁
(𝑛−1)𝜀

𝑑𝑥𝑛

⎧⎪⎨⎪⎩
𝑥𝑛−𝜀∫︁

(𝑛−2)𝜀

𝑑𝑥𝑛−1 · · ·

⎧⎨⎩
𝑥4−𝜀∫︁
2𝜀

𝑑𝑥3

⎧⎨⎩
𝑥3−𝜀∫︁
𝜀

𝑑𝑥2

⎧⎨⎩
𝑥2−𝜀∫︁
0

𝑑𝑥1

⎫⎬⎭
⎫⎬⎭
⎫⎬⎭
⎫⎪⎬⎪⎭ .

Solution (1) can be obtained in a variety of ways. For example, a simple probabilistic-
geometric method was proposed that allows calculating the probability (1) without resorting
to the procedure of multidimensional integration. Thus, it is not difficult to find a solution to
the main problem when 𝑘 = 1. But for 𝑘 > 1, the problem becomes much more complicated.

To advance in solving this problem for 𝑘 > 1, we have created several specialized algo-
rithms using analytical transformations. These developments formed the basis for the unique
software systems “APP-MNIT” and “M-READ16” [14], developed by us, which are highly
specialized, focused on solving a specific probabilistic-combinatorial problem described above
in this article. These software systems were created to run on specialized clusters using par-
allel computing. The cluster “NUSC NSU” was used to carry out the necessary calculations.
That helped to ensure a significant progress in solving the problem. Next, we will focus on
the mathematical component of the developed methods.

First, let us note that for arbitrary fixed values of 𝑛 and 𝑘, the desired solution can be
represented in the form of an 𝑛-fold integral

𝑃𝑛,𝑘(𝜀) = 𝑛!

∫︁
· · ·

∫︁
𝐷𝑛,𝑘(𝜀)

𝑑𝑥1 . . . 𝑑𝑥𝑛, (2)
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where the domain 𝐷𝑛,𝑘(𝜀) of integration is given by the system of linear inequalities⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 < 𝑥1 < 𝑥2 < . . . < 𝑥𝑛−1 < 𝑥𝑛 < 1,
𝑥𝑘+1 − 𝑥1 > 𝜀,
𝑥𝑘+2 − 𝑥2 > 𝜀,

...
𝑥𝑛 − 𝑥𝑛−𝑘 > 𝜀.

To calculate integral (2), we proposed a method of successive dimensionality reduction based
on multiple cyclic replacement of the initial 𝑛-fold integral by a set of repeated integrals of
reduced dimension with already defined integration limits for each variable. On the basis of
this recursive-cyclic algorithm, a system for the analytical calculation of probabilities was
designed and implemented, which calculate the required polynomial dependencies in the
form of functions of the continuous parameter 𝜀.

The calculations made it possible to find a complete set of partial formulas in all ranges
of variation of the continuous parameter 𝜀 for all values of the integer parameters 𝑛 and 𝑘 up
to 𝑛 = 14. It should be noted that the calculations are associated with the need to perform a
large amount of routine operations on setting the limits of integration, checking intermediate
systems of inequalities for consistency and direct integration in 𝑛-dimensional space, which
is almost impossible to do “manually” even for 𝑛 = 4. Therefore, all the necessary software
calculations were carried out on high-performance computing clusters.

2. Generalizing formulas 𝑃 𝑛,𝑘(𝜀) found using software, analytical
and discrete-combinatorial algorithms

At the next stage, we tried to establish the general laws governing the formation of probability
formulas 𝑃𝑛,𝑘(𝜀) for the case 𝑘 > 1 using the analysis of software-calculated particular
solutions of the problem. A number of such analytical regularities were indeed discovered
and subsequently rigorously proved. So, for 𝑘 = 𝑛 − 1 it was revealed, and later proved a
simple dependence

𝑃𝑛,𝑛−1(𝜀) = 1− 𝑛𝜀𝑛−1 + (𝑛− 1)𝜀𝑛. (3)

Let us recall that formula (3) describes the probability that if 𝑛 points are randomly
dropped on the interval (0, 1), they will not all “collapse” into one compact 𝜀-grouping.

For 𝑘 = 𝑛− 2, the relationship is more complex:

𝑃𝑛,𝑛−2(𝜀) =

{︃
1− 2𝐶2

𝑛𝜀
𝑛−2(1− 𝜀)2 − 2𝜀𝑛, 0 ≤ 𝜀 ≤ 1/2,

1− 2𝜀𝑛 + (2𝜀− 1)𝑛 − 2𝐶2
𝑛𝜀

𝑛−2(1− 𝜀)2, 1/2 ≤ 𝜀 ≤ 1.
(4)

For 𝑘 = 𝑛− 3, the dependence becomes so complicated that its reconstruction by analyzing
particular software solutions is an independent laborious task:

𝑃𝑛,𝑛−3(𝜀)

𝑛>6
=

⎧⎪⎪⎨⎪⎪⎩
1− 2𝜀𝑛 + 𝐶1

𝑛(6𝜀
𝑛 − 4𝜀𝑛−1) + 𝐶2

𝑛(−3𝜀𝑛 + 𝜀𝑛−2) + 𝐶3
𝑛(9𝜀

𝑛 − 18𝜀𝑛−1+
+12𝜀𝑛−2 − 3𝜀𝑛−3), 0 ≤ 𝜀 ≤ 1/2,
1− 2𝜀𝑛 + (2𝜀− 1)𝑛 + 𝐶1

𝑛(1− 𝜀)(−2𝜀𝑛−1 + 2(2𝜀− 1)𝑛−1)+
+𝐶2

𝑛(1− 𝜀)2(𝜀𝑛−2 + (2𝜀− 1)𝑛−2)− 3𝐶3
𝑛𝜀

𝑛−3(1− 𝜀)3, 1/2 ≤ 𝜀 ≤ 1.

(5)

For 𝜀 → 0, an asymptotic formula, common for arbitrary 𝑛, is established
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𝑃𝑛,2(𝜀) = 𝐶0
𝑛 + 𝐶2

𝑛(−𝑛+ 2)𝜀2 + 𝐶3
𝑛(4𝑛− 10)𝜀3 + 𝐶4

𝑛(3𝑛
2 − 37𝑛+ 86)𝜀4 + 𝐶5

𝑛(−40𝑛2+

+394𝑛− 922)𝜀5 + 𝐶6
𝑛(−15𝑛3 + 625𝑛2 − 5171𝑛− 12 086)𝜀6 + 𝐶7

𝑛(420𝑛
3 − 10 724𝑛2+

+79 996𝑛−18 7002)𝜀7 + 𝐶8
𝑛(105𝑛

4−10 570𝑛3+20 5499𝑛2−142 6841𝑛+3 336 406)𝜀8+ (6)

+𝐶9
𝑛(5040𝑛

4 − 155 708𝑛3 + 226 7664𝑛2 − 17 317 506𝑛+ 52 315 558)𝜀9 + 𝐶10
𝑛 (−945𝑛5+

+189 000𝑛4 − 15 794 625𝑛3 + 389 687 181𝑛2 − 3 798 029 823𝑛+ 12 998 966 646)𝜀10 + 𝑜(𝜀10).

The above formulas (3)–(6) are confirmed by both software calculations and direct analytical
integration.

3. Generalized Catalan numbers in problems of analysis of random
point fields

Software algorithms for fast calculation of formulas were created primarily to calculate spe-
cific analytical ratios for fixed values 𝑛 and 𝑘. With their help, we also tried (by analogy
with formula (1) for the probability that is valid for all values of 𝑛 for a fixed 𝑘 = 1) to
find a general solution that is valid for all values of n for a fixed 𝑘 = 2. Unfortunately, this
task turned out to be difficult. This is due primarily to the fact that, in contrast to the case
𝑘 = 1, the probability consists not of one, but of several piecewise-homogeneous fragments,
continuously connected at the points of “connection”. Secondly, finding general patterns for
each of the ranges of parameter’s 𝜀 variation required the creation of individual schemes for
the transfer (reduction) of continuous tasks corresponding to these specific ranges to individ-
ual and very complex discrete-probabilistic subtasks. In our reduction scheme, in all of such
subproblems (i. e., in all ranges of the parameter’s 𝜀 variation), multidimensional Catalan
numbers arose (this is not unusual, Catalan numbers and their extensions often appear when
analyzing random sequences [15, 16]).

Knowledge of their explicit form was required when ordering interdependent random
number sequences. Most of these probabilistic-combinatorial problems turned out to be
more convenient to formulate in a dictionary-linguistic form. As an example, below we
give the formulation and the solution for one of these combinatorial problems, which led to
a multidimensional generalization of the classical Catalan numbers. Its distinctive feature
is that it is formulated in a dictionary-linguistic form, solved by purely geometric means,
and is used to rank the interdependencies of sequences in the problems of analyzing random
point fields.

3.1. Example of a combinatorial problem leading to a generalization of the
classical Catalan sequence to the three-dimensional case

So, when proving one of the relations describing the probability of error-free reading of
a random discrete image by an integrator with two threshold levels, we need to solve the
following combinatorial problem:

Different words of length (𝑙+𝑚+𝑛) are composed of 𝑙 symbols “𝑎”, 𝑚 symbols “𝑏” and
𝑛 symbols “𝑐”. It is necessary to determine the total number of words 𝑄𝑙,𝑚,𝑛 such that for
each of them two conditions are simultaneously fulfilled:

– when viewing a word from left to right, the number of “𝑏” characters encountered never
exceeds the number of “𝑎” characters encountered;

– when viewing a word from right to left, the number of “𝑐” characters encountered never
exceeds the number of “𝑎” characters encountered.

Naturally, it is considered that 0 ≤ 𝑚, 𝑛 ≤ 𝑙.
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3.2. Solution. Finding the formula 𝑄𝑙,𝑚,𝑛 for the case 𝑙 > 𝑚+ 𝑛− 2

We searched for a formula in relation to problems in which the condition 𝑙 > 𝑚+ 𝑛− 2 was
a priori fulfilled (more precisely, for the applied problems of analysis of random point images
that we solved, a more strict inequality was fulfilled: 𝑙 ≥ 𝑚+𝑛). The formulated problem is
easier to solve if we give it a geometric interpretation. So, we will consider various monotone
paths on a three-dimensional discrete lattice in the coordinate system (𝑋, 𝑌, 𝑍), which lead
from the point (0, 0, 0) to the point (𝑙,𝑚, 𝑛). Let us assign one of these paths to each word.
In this case, the symbol “𝑎” will correspond to the movement from the current point (𝑖, 𝑗, 𝑘)
to the neighbouring point (𝑖 + 1, 𝑗, 𝑘), the symbol “𝑏” will correspond to the movement to
the point (𝑖, 𝑗 + 1, 𝑘), and the “𝑐” symbol — to the point (𝑖, 𝑗, 𝑘 + 1). Our task will be to
find the total number of monotone paths from point (0, 0, 0) to point (𝑙,𝑚, 𝑛) that do not
go beyond the half-spaces 𝑋 ≥ 𝑌 and 𝑍 ≥ 𝑋 +𝑛− 1 (i. e. the desired paths are limited not
only by the original parallelepiped with sides 𝑙, 𝑚 and 𝑛, but also by the planes 𝑃1 : 𝑋 = 𝑌
and 𝑃2 : 𝑍 = 𝑋 + 𝑛− 𝑙).

We will solve this reformulated problem as follows: from the total number of monotone
paths 𝑄0 leading from the point (0, 0, 0) to the point (𝑙,𝑚, 𝑛), which is equal to

𝑄0 =
(𝑙 +𝑚+ 𝑛)!

𝑙!𝑚!𝑛!

subtract the number of paths that go beyond at least one of the half-spaces 𝑋 ≥ 𝑌 or
𝑍 ≥ 𝑋 +𝑛− 1. To do this, add the number of paths 𝑄1 that go beyond the bounding plane
𝑃1 with the number 𝑄2 of paths that go outside the bounding plane 𝑃2, and subtract from
the resulting sum the number of paths 𝑄12 that go beyond the bounding plane 𝑃1 and the
bounding plane 𝑃2 (since they are counted twice in the sum).

Let us first find the number of paths 𝑄1 that go beyond the bounding plane 𝑃1 at least
once. To do this, we will use a standard technique that often helps in solving problems of
this kind. First, note that in order for any monotonic path leading from the point (0, 0, 0)
to the point (𝑙,𝑚, 𝑛) to go beyond the half-space 𝑋 ≥ 𝑌 , it is necessary and sufficient to
have a link in it of the form (𝑢, 𝑢, 𝑣) > (𝑢, 𝑢 + 1, 𝑣), that is, a link in which the first point
belongs to the plane 𝑃1 and therefore enters the half-space 𝑋 ≥ 𝑌 , and the next point of
the path already lies outside of it. This statement does not require proof.

Based on this, for any path that goes beyond the half-space 𝑋 ≥ 𝑌 at least once, we will
find the first link of the form (𝑢, 𝑢, 𝑣) > (𝑢, 𝑢+1, 𝑣). Further, returning back from the point
(𝑢, 𝑢 + 1, 𝑣) to the starting point of the path (0, 0, 0), we will perform the following mirror
transformation: each movement back along the 𝑋 axis will be replaced by a movement back
along the 𝑌 axis, and vice versa, each move backward along the 𝑌 axis will be replaced
with a move backward along the 𝑋 axis. Move backward along the 𝑍 axis will be left
unchanged. As a result, the “corrected” path will start not at the point (0, 0, 0), but at the
point (−1,+1, 0). Leaving the final section of the original path from the point (𝑢, 𝑢 + 1, 𝑣)
to the point (𝑙,𝑚, 𝑛) unchanged, we get a combined corrected path leading from the point
(−1,+1, 0) to the point (𝑙,𝑚, 𝑛). That is, to each monotonic path leading from the point
(0, 0, 0) to the point (𝑙,𝑚, 𝑛) and at least once going beyond the half-space 𝑋 ≥ 𝑌 , we have
assigned a unique and quite definite path leading from the point (−1,+1, 0) to the point
(𝑙,𝑚, 𝑛).

The converse is also true: for each monotonic path connecting the points (−1,+1, 0) and
(𝑙,𝑚, 𝑛), you can put in a one-to-one correspondence a certain path that leads from the
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point (0, 0, 0) to the point (𝑙,𝑚, 𝑛) and at least once goes beyond the half-space 𝑋 ≥ 𝑌 .
To do this, it is enough to note that any monotonic path from the point (−1,+1, 0) to the
point (𝑙,𝑚, 𝑛) necessarily intersects the plane 𝑃3 : 𝑌 = 𝑋+1, since the start and end points
of such a path lie on different to the sides of the plane 𝑃3. Let’s find the point of the first
tangency of the selected path and the plane 𝑃3. Obviously, the link leading to tangency must
have the form (𝑢 − 1, 𝑢 + 1, 𝑣) > (𝑢, 𝑢 + 1, 𝑣). Now let us mirror the initial segment of the
original path, ending at the point (𝑢, 𝑢+1, 𝑣), relative to the plane 𝑌 = 𝑋 +1, and its final
segment from the point (𝑢, 𝑢 + 1, 𝑣) to the point (𝑙,𝑚, 𝑛) will be left unchanged (note that
such mirroring and the previously performed operation of replacing the 𝑋 and 𝑌 directions
during the return motion from the point (𝑢, 𝑢+ 1, 𝑣) to the origin are equivalent).

As a result, we get a completely accurate corrected path, starting at the point (0, 0, 0)
and ending at the point (𝑙,𝑚, 𝑛). Since under mirror reflection, the link of the original path
(𝑢 − 1, 𝑢 + 1, 𝑣) > (𝑢, 𝑢 + 1, 𝑣) goes into the link (𝑢, 𝑢, 𝑣) > (𝑢, 𝑢 + 1, 𝑣), into at this point,
the corrected path will go beyond the half-space 𝑋 ≥ 𝑌 . Thus, for any path connecting the
points (−1,+1, 0) and (𝑙,𝑚, 𝑛), we have constructed an exact path from the point (0, 0, 0)
to the point (𝑙,𝑚, 𝑛), going beyond the half-space 𝑋 ≥ 𝑌 at least once. Thus, a one-to-one
correspondence between the set of monotone paths connecting the points (−1,+1, 0) and
(𝑙,𝑚, 𝑛) and the set of monotone paths connecting the points (0, 0, 0) and (𝑙,𝑚, 𝑛) and at
least once outside the half-space 𝑋 ≥ 𝑌 is established. That’s why

𝑄1 =
((𝑚− 1) + (𝑙 + 1) + 𝑛)!

(𝑚− 1)!(𝑙 + 1)!𝑛!
=

(𝑙 +𝑚+ 𝑛)!

(𝑙 + 1)!(𝑚− 1)!𝑛!
.

By analogy, using the absolute symmetry of the problem with respect to 𝑚 and 𝑛 for the
total number of paths that go beyond the half-space 𝑍 ≥ 𝑋 +𝑛− 1 at least once, we obtain
the expression

𝑄2 =
(𝑙 +𝑚+ 𝑛)!

(𝑙 + 1)!𝑚!(𝑛− 1)!
.

Now it remains to calculate the number of monotone paths 𝑄12, each of which, without going
beyond the boundaries of the original parallelepiped, has sections that go both outside the
half-space 𝑋 ≥ 𝑌 and outside the half-space 𝑍 ≥ 𝑋 + 𝑛 − 1. Below we will show that
between the set of paths 𝑄12 and the set of monotone paths from the point (−1,+1, 0) to
the point (𝑙 + 1,𝑚, 𝑛− 1), we can establish a one-to-one correspondence, which means that
these two sets have the same cardinality.

First, we will demonstrate how to any monotone path leading from the point (0, 0, 0) to
the point (𝑙,𝑚, 𝑛) and going beyond both half-spaces 𝑋 ≥ 𝑌 and 𝑍 ≥ 𝑋 + 𝑛 − 1, to put
in a one-to-one correspondence a well-defined monotonic path from the point (−1,+1, 0) to
the point (𝑙 + 1,𝑚, 𝑛− 1). Then, on the contrary, to any monotonic path leading from the
point (−1,+1, 0) to the point (𝑙 + 1,𝑚, 𝑛 − 1), we will put in a one-to-one correspondence
a monotonic path leading from the point (0, 0, 0) to the point (𝑙,𝑚, 𝑛) and going beyond
both half-spaces 𝑋 ≥ 𝑌 and 𝑍 ≥ 𝑋 + 𝑛− 1. Let’s start with the first geometric build, i. e.
any path from the point (0, 0, 0) to the point (𝑙,𝑚, 𝑛) and going beyond both half-spaces
𝑋 ≥ 𝑌 and 𝑍 ≥ 𝑋 + 𝑛 − 1, we assign a single monotone path from the point (−1,+1, 0)
to the point (𝑙 + 1,𝑚, 𝑛 − 1). To do this, note that any monotone path leading from the
point (0, 0, 0) to the point (𝑙,𝑚, 𝑛) and going beyond both of these half-spaces must have
the following property: if you build all the exits of this path outside the half-spaces 𝑋 ≥ 𝑌
and 𝑍 ≥ 𝑋 + 𝑛− 1 in their order, then the first exit outside the half-space 𝑍 ≥ 𝑋 + 𝑛− 1
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will occur only after the last exit outside the half-space 𝑋 ≥ 𝑌 ends. Let us prove this
statement by contradiction.

Suppose that there is a point on the path (𝑥1, 𝑦1, 𝑧1) that goes beyond the half-space
𝑍 ≥ 𝑋 + 𝑛− 1, which precedes some point on the path (𝑥2, 𝑦2, 𝑧2) that lies outside the half-
space 𝑋 ≥ 𝑌 . Then, for the coordinates of the point (𝑥1, 𝑦1, 𝑧1) lying outside the half-space
𝑍 ≥ 𝑋 + 𝑛 − 1, the two-sided inequality 0 ≤ 𝑧1 < 𝑥1 + 𝑛 − 𝑙 is true, whence it follows
that 𝑙 − 𝑛 < 𝑥1. Similarly, if a point (𝑥2, 𝑦2, 𝑧2) lies outside the limits of the half-space
𝑋 ≥ 𝑌 , then the two-sided inequality 𝑥2 < 𝑦2 ≤ 𝑚 must hold, which implies that 𝑥2 < 𝑚.
Since, according to our assumption, the point (𝑥1, 𝑦1, 𝑧1) precedes the point (𝑥2, 𝑦2, 𝑧2), then
𝑥1 ≤ 𝑥2. Combining the three obtained inequalities, we get 𝑙−𝑛 < 𝑥1 ≤ 𝑥2 < 𝑚. Due to the
presence of two strict inequalities in this system, we will have 𝑙 ≤ 𝑚+𝑛−2, which contradicts
the initial condition 𝑙 > 𝑚 + 𝑛 − 2. Hence, our assumption that in the case 𝑙 > 𝑚 + 𝑛 − 2
there may be some monotone path from the point (0, 0, 0) to the point (𝑙,𝑚, 𝑛), in which
one of the exits outside the half-space 𝑍 ≥ 𝑋 + 𝑛− 1 precedes the exit of the path beyond
the half-space 𝑋 ≥ 𝑌 is false. Therefore, all such paths should schematically look like this:

(0, 0, 0) > · · · > (𝑥1, 𝑥1, 𝑧1) > (𝑥1, 𝑥1 + 1, 𝑧1) > · · · >
> (𝑥2, 𝑦2, 𝑥2 + 𝑛− 𝑙) > (𝑥2 + 1, 𝑦2, 𝑥2 + 𝑛− 𝑙) > · · · > (𝑙,𝑚, 𝑛).

The first mirror reflection of this path is carried out with its initial segment starting at the
point (0, 0, 0) and ending at the point (𝑥1, 𝑥1 + 1, 𝑧1), which is the first point of the path
lying outside the half-space 𝑋 ≥ 𝑌 . Coming back from the point (𝑥1, 𝑥1 + 1, 𝑧1) to the
origin of coordinates (0, 0, 0), we will each time instead of a negative step along the 𝑋 axis
take a negative step along the 𝑌 axis, and vice versa — instead of a negative step along
the 𝑌 axis we will make a negative step along the 𝑋 axis. It is easy to see that with such
a transformation, the corrected path will start not at the point (0, 0, 0), but at the point
(−1,+1, 0). The second mirror reflection will be carried out with the final section of the path
starting at the point (𝑥2+1, 𝑦2, 𝑥2+𝑛− 𝑙) and ending at the point (𝑙,𝑚, 𝑛). For definiteness,
as before, we will assume that the point (𝑥2 + 1, 𝑦2, 𝑥2 + 𝑛− 𝑙) is the first point of the path
going beyond the half-space 𝑍 ≥ 𝑋 + 𝑛− 1 (generally speaking, there can be several points
with coordinates having the form (𝑥2 + 1, 𝑦2, 𝑥2 + 𝑛− 𝑙)).

The transformation of the final section of the path should be as follows: each step along
the 𝑋 axis should be replaced with a step along the 𝑍 axis, and each step along the 𝑍 axis
should be replaced with a step along the 𝑋 axis. It is easy to see here that the end point of
the corrected path instead of the point (𝑙,𝑚, 𝑛) will be the point (𝑙 + 1,𝑚, 𝑛− 1). Thus, to
any monotone path leading from the point (0, 0, 0) to the point (𝑙,𝑚, 𝑛) and going beyond
both half-spaces 𝑋 ≥ 𝑌 and 𝑍 ≥ 𝑋+𝑛− 𝑙, we have assigned a well-defined monotonic path
from the point (−1,+1, 0) to the point (𝑙 + 1,𝑚, 𝑛− 1).

The converse statement that any monotone path leading from the point (−1,+1, 0) to the
point (𝑙+1,𝑚, 𝑛− 1) can be put in a one-to-one correspondence with a certain path leading
from the point (0, 0, 0) to the point (𝑙,𝑚, 𝑛) and going beyond both half-spaces 𝑋 ≥ 𝑌 and
𝑍 ≥ 𝑋 + 𝑛 − 𝑙, is proved as follows. Note that the path from the point (−1,+1, 0) to the
point (𝑙 + 1,𝑚, 𝑛− 1) necessarily intersects the plane 𝑃3 : 𝑌 = 𝑋 + 1, since these points lie
on different sides of the plane 𝑃3. Let us find the point of the first tangency of this path
and plane 𝑃3 : 𝑌 = 𝑋 + 1. The link immediately preceding the tangency obviously has the
form (𝑢 − 1, 𝑢 + 1, 𝑣) > (𝑢, 𝑢 + 1, 𝑣). Conducting a mirror reflection relative to plane 𝑃3 of
the initial section of the path from the point (−1,+1, 0) to the point (𝑢, 𝑢+1, 𝑣), we get the
first correction of the original path.
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It will now start not at the point (−1,+1, 0), but at the point (0, 0, 0), then pass through
the point (𝑢, 𝑢 + 1, 𝑣) and still end at the point (𝑙 + 1,𝑚, 𝑛 − 1). Since, as a result of
mirroring, the link of the original path (𝑢 − 1, 𝑢 + 1, 𝑣) > (𝑢, 𝑢 + 1, 𝑣) goes into the link
(𝑢, 𝑢, 𝑣) > (𝑢, 𝑢+1, 𝑣), then at this point the corrected path passes from the half-space𝑋 ≥ 𝑌
to the half-space 𝑋 < 𝑌 . Next, let’s notice that the start and end points of the new corrected
path (0, 0, 0) and (𝑙 + 1,𝑚, 𝑛− 1) lie on opposite sides of the plane 𝑃4 : 𝑍 = 𝑋 + 𝑛− 𝑙 − 1.
This means that the corrected path must cross the plane 𝑍 = 𝑋 + 𝑛− 𝑙− 1. Find the point
at which the first tangency of this original path and the plane 𝑃4 occurs: 𝑍 = 𝑋 +𝑛− 𝑙− 1.
The coordinates of this point, obviously, have the form (𝑥, 𝑦, 𝑥+𝑛− 𝑙− 1), i. e. it is the first
point of the path lying outside the half-space 𝑍 ≥ 𝑋 + 𝑛− 𝑙. If to the previously obtained
with the help of mirroring the initial section of the path, starting at the point (0, 0, 0) and
ending at the point (𝑢, 𝑢+ 1, 𝑣), add the central section of the original path from the point
(𝑢, 𝑢+ 1, 𝑣) to the point (𝑥, 𝑦, 𝑥+ 𝑛− 𝑙− 1), then we get a corrected path consisting of two
segments and connecting points (0, 0, 0) and (𝑥, 𝑦, 𝑥+𝑛− 𝑙− 1), which contains at least one
point from the half-spaces 𝑋 ≥ 𝑌 and 𝑍 ≥ 𝑋 + 𝑛− 𝑙.

Now it remains to carry out the second transformation of the original path, namely: the
final segment from the point (𝑥, 𝑦, 𝑥+𝑛− 𝑙− 1) to the end point (𝑙+1,𝑚, 𝑛− 1) is mirrored
relative to the plane 𝑃4 : 𝑍 = 𝑋 + 𝑛− 𝑙 − 1. In fact, as noted, this mirroring is equivalent
to each 𝑋 step being replaced by a 𝑍 step on the final leg of the path, and vice versa, each
𝑍 step being replaced by an 𝑋 step. As a result, the final segment of the corrected path
will end not at the point (𝑙+1,𝑚, 𝑛− 1), but at the point (𝑙,𝑚, 𝑛). Putting three segments
together, we get a corrected combined path from point (0, 0, 0) to point (𝑙,𝑚, 𝑛), which at
least once goes beyond the half-spaces 𝑋 ≥ 𝑌 and 𝑍 ≥ 𝑋 + 𝑛− 𝑙.

Thus, a one-to-one correspondence between the set of monotone paths connecting the
point (−1,+1, 0) with the point (𝑙+1,𝑚, 𝑛−1) and the set of monotone paths connecting the
point (0, 0, 0) with a point (𝑙,𝑚, 𝑛) and going out at least once both outside the half-space
𝑋 ≥ 𝑌 and outside the half-space 𝑍 ≥ 𝑋 + 𝑛− 𝑙, is established. That’s why

𝑄12 =
(𝑙 +𝑚+ 𝑛)!

(𝑙 + 2)!(𝑚− 1)!(𝑛− 1)!

and the solution of the problem on the number of monotone paths from the point (0, 0, 0) to
the point (𝑙,𝑚, 𝑛) that do not go beyond the half-spaces 𝑋 ≥ 𝑌 and 𝑍 ≥ 𝑋 + 𝑛− 𝑙 (as well
as the solution of the problem presented in the statement of the article about the number of
three-character words), in the case 𝑙 > 𝑚+ 𝑛− 2 is given by the formula

𝑄𝑙,𝑚,𝑛 = 𝑄0 −𝑄1 −𝑄2 +𝑄12 =
(𝑙 +𝑚+ 𝑛)!

𝑙!𝑚!𝑛!
− (𝑙 +𝑚+ 𝑛)!

(𝑙 + 1)!(𝑚− 1)!𝑛!
−

− (𝑙 +𝑚+ 𝑛)!

(𝑙 + 1)!𝑚!(𝑛− 1)!
+

(𝑙 +𝑚+ 𝑛)!

(𝑙 + 2)!(𝑚− 1)!(𝑛− 1)!
. (7)

The obtained relation for 𝑄𝑙, 𝑚, 𝑛, considered in the area {𝑙 > 𝑚 + 𝑛 − 2;𝑚,𝑛 ≤ 𝑙} is a
three-dimensional extension of the classical Catalan numbers. Moreover, in the case {𝑛 = 0}
we have a two-dimensional extension, and in the case {𝑛 = 0; 𝑙 = 𝑚} we have the classical
Catalan sequence.
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4. Generalizing formulas 𝑃 𝑛,2(𝜀) found using generalized Catalan
numbers

In the case 𝑘 = 2 for the probabilities 𝑃𝑛,2(𝜀), we failed to find a general compact analytic
relation similar to formula (1) for the probability for 𝑘 = 1. However, using all the above
computer-based and discrete-combinatorial tools, including software-analytical calculations
and generalized Catalan numbers, we established and subsequently proved a number of new
and previously unknown relations. For even values of 𝑛 = 2𝑚 on the segment 1/𝑚 < 𝜀 <
1/(𝑚− 1), the previously stated hypothesis formula is rigorously proved

𝑃2𝑚,2(𝜀) =
1

𝑚+ 1
𝐶𝑚

2𝑚(1− (𝑚− 1)𝜀)2𝑚. (8)

For even values of 𝑛 = 2𝑚 on the segment 1/(𝑚+ 1) < 𝜀 < 1/𝑚, the formula is established

𝑃2𝑚,2(𝜀)=𝐶𝑚
2𝑚(1−(𝑚−1)𝜀)2𝑚−𝐶𝑚−1

2𝑚 (1−(𝑚−1)𝜀)2𝑚−𝐶𝑚−2
2𝑚 (1−𝑚𝜀)𝑚+2(1−(𝑚−2)𝜀)𝑚−2+

+ 2𝐶𝑚−3
2𝑚 (1−𝑚𝜀)𝑚+3(1− (𝑚− 2)𝜀)𝑚−3 − 𝐶𝑚−4

2𝑚 (1−𝑚𝜀)𝑚+4(1− (𝑚− 2)𝜀)𝑚−4. (9)

For odd values 𝑛 = 2𝑚+1 on the segment 1/(𝑚+1) < 𝜀 < 1/𝑚, the formula is established

𝑃2𝑚+1,2(𝜀) = 𝐶𝑚+1
2𝑚+1(1−𝑚𝜀)𝑚+1(1−(𝑚−1)𝜀)𝑚−2𝐶𝑚+2

2𝑚+1(1−𝑚𝜀)𝑚+2(1−(𝑚−1)𝜀)𝑚−1+

+ 𝐶𝑚+3
2𝑚+1(1−𝑚𝜀)𝑚+3(1− (𝑚− 1)𝜀)𝑚−2. (10)

It should be noted that the multiplier
1

𝑚+ 1
𝐶𝑚

2𝑚 on the right side of our expression (8)

exactly corresponds to the classical Catalan sequence. In the proof of formula (9), we
directly used relation (7) given in the previous section, which specifies the explicit form
of the generalized Catalan numbers. But to obtain and prove formula (10), the use of
relation (7) turned out to be insufficient, therefore, in this case, we additionally used the
technique of finding monotonic paths in Weyl chambers [17]. All the software calculations
carried out confirm the exact analytical formulas obtained (8)–(10).

Conclusion

The results presented in this article were obtained with the help of specialized tools of
machine analytics, as well as with the use of generalized Catalan numbers, which made it
possible to transfer the inherently continuous problem of finding probabilistic formulas to
the category of discrete-combinatorial ones.

The efficiency of the proposed discrete-combinatorial methods allows us to hope for fur-
ther progress in solving the described “continuous” problem, up to finding a general ana-
lytical dependence that is valid for arbitrary values of the integer parameters 𝑛 and 𝑘 in
all ranges of variation of the continuous parameter 𝜀. The availability of such a generalized
analytical solution will provide researchers with an important tool for assessing the degree
of randomness of the analyzed point images.
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Аннотация
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